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1 INTRO?XJCTION 

Whereas the  reader w i l l  undoubtedly recognize the  term "cathepsin C," 

few w i l l  recognize the term "dipeptidyl aminopeptidase I ."To consider 

cathepsin C a dipept idyl  aminopeptidase may actual ly  seem incompatible with 

respect t o  the r e s t r i c t ed  ca ta ly t ic  properties t h a t  have been reported f o r  

t h i s  enzyme. Following the  discovery of cathepsin C i n  swine kidney by 

Gutmann and Fruton (1948), a se r i e s  of c lass ic  papers concerned with the  

propert ies  of t h i s  enzyme, published by Fruton and h i s  associates, l ed  t o  

the  conclusion t h a t  the substrate spec i f ic i ty  of cathepsin C was too 

severely r e s t r i c t ed  t o  permit i t s  meaningful contribution t o  t i s sue  proteo- 

l y s i s  ( fo r  references, see Izumiya and Fluton 1956; Fruton 1957; Metrione 

e t  a l .  1966). 

peptides l ed  t o  the  same conclusion (Planta and Gruber 1961; Planta e t  a l .  

1964 ) . 
a c t i v i t y  of cathepsin C. 

t ransferase"  (Voynick and Buton  1968; Heinrich and Fruton 1968). 

Studies conducted by others on peptide derivatives and poly- 

More recent papers from Fruton's laboratory focused on the  polymerase 

I n  those papers, cathepsin C was cal led "dipeptidyl 

The term 

aminopeptidase," on the  other hand, denotes a hydrolytic ac t iv i ty  and, 11 

generally speaking, suggests a re la t ively broad substrate spec i f ic i ty .  The 

s tudies  described i n  t h i s  report  a re  intended t o  show t h a t  cathepsin C does, 

indeed, have a broad substrate  specif ic i ty ,  and %hat it should, l i k e  some 

other  newly-found t i s s u e  peptidases mentioned here, be c lass i f ied  as  a dipep- 

t i d y 1  aminopeptidase. As the  t e r m  implies, these enzymes degrade peptides 

through a process of fraglnentation that  begins with En attack a t  

t h e  unsubsti tuted NH 

removal of amino acids as dipeptides. 

terminus of the substrate, and catalyzes the successive 
2 

The t e x t  of t h i s  report  deals with the spec i f i c i t i e s  and properties 1 

k 
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Qf dipept idyl  aminopeptidase I (cathepsin C )  from r a t  l i v e r ,  bovine 

spleen, and ra t  and bovine p i tu i t a ry  glands; dipept idyl  aminopeptidases11 and 

I11 of the  an te r io r  p i t u i t a r y  gland; and dipept idyl  aminopeptidase I V  

( "Gly-Pro-B-naphthylamidase" ) of kidney and l i v e r .  The d is t r ibu t ion  

of these enzymes i n  t h e  t i s sues ,  t he i r  subcel lular  local izat ion,  and 

t h e i r  possible physiological significance w i l l  a l so  be considered. 

2. DIPEPTIDYL AMINOPEPTIDASE I (CATHEPSIN C )  

2.1. Background 

The chloride requirement and broad substrate  spec i f i c i ty  of di-  

pept idyl  aminopeptidase I were f i r s t  recognized i n  preparations derived 

from the  bovine a n t e r i o r  p i t u i t a r y  gland. 

e t  a l .  1965, 1966a) described the  p i tu i t a ry  enzyme as a chloride-acti-  

vated, sulfhydryl-dependent dipeptidyl arylamidase t h a t  catalyzed the  

cleavage of Ser-Tyr from Ser-Tyr-B-naphthylamide (a fluorogenic model of 

t h e  NH 
2 2 

decapeptide of adrenocorticotropic hormone (abbreviated ACTH). The 2 i t u i t a r y  

enzyme had an optimum a t  about pH 4.0, that increased with purif icat ion,  

and i t s  ac t ion  was r e s t r i c t e d  t o  substrates having an unsubstituted NH 

terminus. A t  about pH 6.5 it w a s  possible t o  obtain a 4-to 6-foid en- 

hancement of the r a t e  of f r e e  @-naphthylamine formation from Ser-Tyr- 

B-naphthylamide by adding Gly-Phe-NH, o r  puromycin (a p-methoxy-L-phenyl- . 

The o r ig ina l  reports  (McDonald 

- 

terminus of adrenocorticotropic hormone) and from the  MI -terminal 

2 

a lany l  aminonucleoside ) 

Chloride and sulfhydryl  

enhancement phenomenon. 

L, 

t o  reaction mixtures (McDonald e t  a l .  1965). 

requirements were a l so  demonstrated f o r  the  

It was postulated t h a t  the added Gly-Phe-NHZ 
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gnd puromycin served as  acceptors i n  a transferase reaction catalyzed 

by the p i t u i t a r y  "dipeptidyl arylamidase I. I' It w a s  not possible, a t  

tha t t ime,  t o  a t t r i b u t e  the a c t i v i t i e s  of the p i tu i t a ry  enzyme t o  cathep- 

s i n  C. 

been able t o  demonstrate cathepsin C ac t iv i ty  i n  p i tu i t a ry  extracts  using 

the  t r a d i t i o n a l  Gly-Phe-NH substrate.  Furthermore, t he  chloride require- 

ment found for the  p i t u i t a r y  enzyme had never been reported for  cathepsin 

C. 

W e ,  a s  well  as  others (Vanha-Perttula and Hopsu 1965), had not 

2 

To help es tab l i sh  the  ident i ty  of the p i tu i t a ry  enzyme, it became 

necessary t o  t e s t  spleen cathepsin C for a chloride requirement, and t o  

compare i t s  substrate  spec i f i c i ty  with tha t  of the p i t u i t a r y  enzyme. A s  

reported @Donald e t  a l .  1966b), pa r t i a l ly  purif ied preparations of 

cathepsin C from both bovine spleen and r a t  spleen were found to'have 

an apparently absolute chloride requirement. Through a personal communi- 

cation, it was learned t h a t  Gorter and Gruber, a t  Groningen University, 

had a l so  recent ly  observed the  chloride requirement. of bovine spleen 

cathepsin C. For many years t he  ac t iv i ty  of bovine spleen cathepsin C 

w a s  studied, for tui tously,  i n  chloride-or bromide-containing'reaction mixtures 

(Izumiya and Fruton 1956; Planta and Gruber 1963; Vanha-Perttula e t  a l .  

1965), primarily because dipeptide amide substrates were prepared and 
' 

used as hydrochloride salts. On the other'hand,attempts t o  assess the 

a c t i v i t y  of the  enzyme on peptides and proteins may have been jeopardized 

by chloride deficiencies unless a chloride-containing sulfhydryl ac t i -  

vator  was used, i .e . ,  cysteine hydrochloride o r  2-mercaptoethylamine hy- 

drochloride. Chloride deficiencies may account fo r  t he  negative r e su l t s  

obtained on glucagon (Planta and Gruber 1961; Planta e t  a l .  1964), and 
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>he i n a b i l i t y  of others t o  detect  glucagon-degrading a c t i v i t y  i n  ex- 

t r a c t s  of l i v e r  lysosomes (Kenny 1956, 1958). 

Since t h e  r e l a t ive  e f fec t  of the d i f fe ren t  halides on spleen di-  

peptidyl aminopeptidase I, including the replacement e f f ec t  of n i t ra te ,  

resembled properties already reported f o r  the  p i tu i t a ry  enzyme, the  

p o s s i b i l i t y  arose t h a t  these enzymes had a common ident i ty .  

i t s  a b i l i t y  t o  degrade peptides such as ACTH and alanine peptides, the 

Based on 

p i t u i t a r y  enzyme was renamed "dipeptidyl aminopeptidase I" (McDonald 

e t  a l .  1968a), replacing the term "dipeptidyl arylamidase I. " 

before any conclusions could be reached regarding the possible common 

However, - 

ident i ty  f o r  the  p i tu i t a ry  and spleen enzymes, it became es sen t i a l  t o  

examine the substrate  spec i f ic i ty  of highly purif ied bovine spleen 

cathepsin C. I n  addition, since l i ve r  preparations exhibited a chloride- 

and sulfhydryl-dependent hydrolysis of His-Ser-f3-naphthylamide, a fluoro- 

genic model of the  MI2 terminus of glucagon (McDonald e t  a l .  196611, 1969a), 

cathepsin C w a s  therefore purif ied from rat l i v e r , . a s  well  as  bovine 

spleen, for the  purpose of investigating  he possible ident i ty  of the so- 

ca l led  "glucagon-degrading enzyme'' of l i v e r  -- a chloride- and sulf'hydryl- 

dependent enzyme tha t  w a s  thought t o  be d i s t inc t  from cathepsin C 

(Kakiuchi and Tomizawa 1964 ) . 
The s tudies  described i n  t h i s  report  were conducted with cathepsin 

C pur i f ied  according t o  Metrione, Xeves, and Fruton (1966). 

y ie lds  a highly pur i f ied  bovine spleen cathepsin C with a specif ic  

a c t i v i t y  about nine t i m e s  greater than tha t  achieved by the  method of de 

l a  Haba e t  a1.(1959). 

when r a t  l i v e r  was used as a source of cathepsin C (McDonald e t  a l .  1969b). 

Cathepsin-C from bovine spleen and r a t  l i v e r  was found t o  have many 

propert ies  common t o  t h e  p i tu i ta ry  enzyme. I n  addition t o  other s imi la r i t i es ,  

This method 

Even higher specif ic  a c t i v i t i e s  were achieved 
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these enzymes showed the same substrate spec i f ic i ty  on polypeptide sub- 

strates, i n  par t icular ,  the  a b i l i t y  t o  catalyze the  removal of dipeptides 

i n  sequence. Considering the nature of t h e i r  degradative ac t iv i ty  and 

the  evidence f o r  t h e i r  common identity,  cathepsin C from bovine spleen 

and rat l i v e r  a re  herein referred t o  as "dipeptidyl aminopeptidase I." 

2.2 Degradation of Polypeptides 

The degradation of peptide hormones by dipeptidyl aminopeptidase I 

has yielded new information about the substrate spec i f ic i ty  of this en- 

zyme (McDonald and E l l i s  1968; McDonald e t  a l .  1969a, 1969b). 

The degradation of @-corticotropin by rat l i v e r  dipeptidyl aminopep- 

t i dase  I (Fig. 1) i s  representative of t he  r e s u l t s  obtained with the spleen 

and p i t u i t a r y  enzymes. 

strate spec i f i c i ty  f o r  the  enzyme. 

(25%) w a s  l e s s  than what w a s  subsequently demonstrated with other hormone 

These findings revealed a surprisingly broad sub- 

Although the  extent of ACTH degradation 

substrates ,  the  r e su l t s  of the time course analysis '(Fig. 1) provided a 

reasonably unambiguous, v i sua l  i l l u s t r a t ion  of the sequential  release of 

dipept ides  by dipeptidyl aminopeptidase I. 

from ACTH, which was anticipated ('Planta and Gruber 1961; McDonald e t  a l .  

Upon the release of Ser-Tyr 

1965), the next e ight  residues were l iberated sequentially i n  pairs: 

Ser-Met, Glu-His, Phe-Arg, and Trp-Gly. The apparent low yield of Trp-Gly 

w a s  ac tua l ly  the r e su l t  of a weak ninhydrin color reaction, as demonstrated 

by the Trp-Gly standard. The r a t  l i ve r  and bovine spleen enzymes exhibited 

the same degradative a c t i v i t y  on both native 

and synthet ic  f3 -corticotropin. Comparable bonds were cleaved i n  a 

porcine ACTH (39 residues) 

1-24 

re la ted ,  small fragment, Phe-Arg-Trp-Gly-OMe. An NH -terminal D-serine, 2 
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17,18 1-18 -B -corticotropinamide, which renders the  hor- 1 a s  i n  D-Ser , Lys 

none r e s i s t an t  t o  a t tack  by leucine aminopeptidase (Boissonnas e t  a l .  

1966), did not prevent the degradation of t he  hormone by dipeptidyl amino- 

- 

peptidase I. 

E T y r  (McDonald e t  al. 1969b). 

D-Ser-L-Tyr was cleaved a t  20 t o  25% of the  r a t e  of L-Ser- 
0 
'/ By comparison, a-melanphore-stimulating 

hormone, which has an NH -terminal sequence l i k e  t h a t  of B-corticotropin, 

but with an #-acetyl substi tuent,  was not hydrolyzed. 

2 

These findings are 

consis tent  with e a r l i e r  s tudies  showing t h a t  blocked dipeptide derivatives 

are not hydrolyzed (Wiggans - e t  a l .  1954). 

A n  analysis of the  specif ic  bonds cleaved i n  ACI'H revealed some un- 

expected substrate  spec i f i c i ty  character is t ics  of t he  enzyme. Ser-Met was 

readily removed i n  contrast  t o  resu l t s  obtained with Gly-Met-PlH (Tallan 
2 

e t  al .  1952). The cleavage of the  penultimate h i s t i d y l  and arglnylbonds was - 
of spec ia l  i n t e re s t  i n  view of e a r l i e r  reports t h a t  t he  hydrolytic act iv-  

i t y  of the enzyme was v i r tua l ly  res t r ic ted  t o  the  carbonyl s ide of residues 

having a hydrophobic side chain (Izumiya and Fruton 1956; Planta e t  a l .  

1964; Voynick and Fruton 1968). 

were hydrolyzed more rapidly than any other; however, the properties of 

- 
As w i l l  be seen, arginyl and ly sy l  bonds 

t h e  NH -terminal residue can greatly modify these ra tes .  
2 

hand, it was not surpr is ing t o  f ind tha t  the  degradation of ACTH f a i l e d , t o  

proceed beyond the  t en th  residue. 

( res idue ll) arose. 

peptidase I has no act ion on dipeptide amides with an  NH -terminal lysine, 

i . e . ,  Ip-Phe-m2 and Lys-Tyr-NH2 (Izwniya and Fruton 1956). As w i l l  be 

seen, t h e  penultimate pro ly l  residue (a t  posit ion 1 2 )  consti tuted an ad- 

On the  other 

A t  t ha t  point an NH -terminal lysine 2 

It had already.been demonstrated that dipeptidyl arnino- 

. 
2 

d i t  i ona l  ob s t ruc t i on. 

The degradative a c t i v i t y  of dipeptidyl aminopeptidase I was fur ther  
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demonstrated using several  other polypeptide hormones as substrates.  

These included glucagon and secre t in  (McDonald and E l l i s  1968; McDonald 

e t  al. 1969a); t he  B chain of oxidized bovine insu l in  ahd the des-€?he B - 
chain (McDonald e t  al.  196913; 

angiotensin I1 (CIM hy-pertensin) and Trp-Met-Asp-Phe-NHZ, the  physio- 

log ica l ly  active,  COCIR terminus of gastrin (McDonald e t  a l .  1969b); and 

Callahan e t  al. 1969); Asp1(%)- 

synthetic, human I l e  5 -angiotensin I1 (unpublished). The degradation ob- 

served i n  these substrates i s  summarized i n  Fig. 2. The "arrows" shown 

along the  top  of each sequence indicate the  points of cleavage, and the  

ex ten t  t o  which each hormone was degraded. 

The biological  activiky of each of t h e  hormonally act ive peptides 

shown i n  Table 2 was l o s t  with the cleavage of the  first dipeptide. 

was shown t o  be the case f o r  glucagon (McDonald e t  a l .  1969a), and would 

be predicted for the  other hormones on the  bas i s  of the  known s t ruc tu ra l  

requirements of ACCK (White 1955; Schwyzer 1963), the  gas t r in  tetrapeptide 

(Tracy and Gregory l964), and, according t o  Ondetti (McDonald e t  a l .  

1969a), secret in .  I n  the  case of angiotensin I1 and angiotensin I1 amide, 

wherein the loss of the  NHZ-terminal aspartyl ,  o r  asparaginyl, residue 

r e s u l t s  i n  a 5076 l o s s  of vasopressor ac t iv i ty ,  the  loss of the NH2-terminal 

This 

dipeptide should destroy a l l  the  pressor ac t iv i ty  of the  hormone (Schwyzer 

and Turrian 1960). 

As seen i n  Fig. 2, dipeptidyl aminopeptidase I catalyzed an exten- 

s ive  breakdown of a l l  the peptides tes ted .  

it w a s  possible t o  degrade these peptides over a 1 t o  2 hour time course 

using a molar r a t i o  of enzyme t o  substrate between 

higher r a t i o s  were required f o r  the maximal digestion of substrates such as  

I n  the  pH range of 5.0 t o  5.5, 

t o  The 

glucagon, secretin,  and the B chain of oxidized insulin;  the lower r a t io s  
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for ACTH, angiotensin 11, and the gastr in  tetrapeptide.  I n  every instance, 

dipeptides were l iberated, in  sequence, indicating the  absence of any in- 

t r i n s i c  or  contaminating endopeptidase ac t iv i ty .  

conducted on the  digest  during the degradation of glucagon f a i l ed  t o  show 

points of cleavage other than those at t r ibutable  t o  the  release of dipep- 

t i des .  While it is  obvious tha t  a wide var ie ty  of bonds were cleaved, an 

examination of Fig. 2 shows t h a t  the  enzyme has some c lear ly  defined 

l imitat ions.  Dipeptidyl aminopeptidase I was unable t o  remove the  Arg- 

Arg dipeptide tha t  a r i s e s  from Residues 17 and 18 of glucagon. Neither 

was it able  t o  hydrolyze Arg-Arg-/3-naphthylamide. The r e su l t s  obtained 

with secre t in  show t h a t  Ser-Arg (Residues U. and 1 2 ) ,  Leu-Arg (Residues 

13 and 14), and Ala-Arg (Residues 17 atd 18) were readi ly  cleaved; however, 

the  emergence of Arg-Leu (Residues 2 1  and 22)  prevented fur ther  degradation 

of secret in .  

otherwise have been hydrolyzed since Glu-Leu ( i n  secret in) ,  Tyr-Leu ( i n  

glucagon), Gly-Leu ( i n  insu l in  A chain), and His-Leu ( i n  insu l in  B chain) 

were eas i ly  hydrolyzed. It was concluded, therefore, t h a t  t he  degradative 

a c t i v i t y  of dipeptidyl aminopeptidase I can be blocked, not only by the  

appearance of a terminal lysine residue but also by the  emergence of an 

%-terminal arginine. 

minal (as  i n  glucagon and secret in) ,  o r  penultimate (as arises i n  ACTH 

and the B chain of insul in) ,  are  no obstacle. 

M12-Terminal analyses 

It seems reasonable t o  assume t h a t  the leucyl  residue should 

On the other hand,histidine residues, e i the r  t e r -  

Fig. 2 a l so  contains examples of the resistance of proline residues. 

The OH-terminal  te t rapept ide of the B chain of insu l in  (Thr-Fro-Lys- 

A l a )  was  not hydrolyzed, nor was Gly-Pro-B-naphthylamide . Ear l ie r  s tudies  

by Planta e t  a l . ( l964)  showed tha t  a tripeptide,.Thr-Pro-Lys, was a l so  re- 

s i s t a n t  t o  hydrolysis; however, as w i l l  be seen, it is more meaningful t o  

- 
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evaluate the substrate  spec i f i c i ty  of dipept idyl  aminopeptidase I on 

peptides having a t  l e a s t  four residues. These r e s u l t s  show t h a t  t he  

continued degradation of a polypeptide can be blocked by the emergence 

of a penultimate pro ly l  residue. Furthermore, dipept idyl  aminopeptidase 

I was unable t o  hydrolyze Val-His-Pro-Phe and Ile-His-Pro-Phe, the  resid-  

u a l  COOH-terminal te t rapept ides  a r i s ing  from the  breakdown of t he  two an- 

giotensin I1 substrates .  Referring ahead t o  Fig. 15, t h i s  res is tance i s  

evident from the  products of Asp (NH2)-angiotensin I1 degradation a t  pH 

8.0 by dipept idyl  aminopeptidase 111, the  r e s u l t s  of which a re  iden t i ca l  

t o  those obtained with dipept idyl  aminopeptidase I a t  pH 5.5. 

containing t r ipept ides  such as Gly-Phe-Pro and Val-Tyr-Pro a r e  a l so  r e s i s -  

t a n t  (Planta e t  a l .  1964). 

I is  unable t o  cleave dipeptides from the  imino nitrogen of proline.  This 

r e s t r i c t i o n  i s  reminiscent of similar r e s t r i c t i o n s  reported f o r  chymotryp- 

s i n  (Shepherd e t  a l .  1956) and leucine aminopeptidase (Fra te r  e t  a l .  1965). 

The i n a b i l i t y  of dipept idyl  aminopeptidase I t o  cleave dipeptides from pro- 

l i n e  i s  consis tent  with the inab i l i t y  of t h i s  enzyme t o  polmerize dipeptide 

amides and e s t e r s  containing NH2-terminal proline (Wiggans e t  a l .  1954). 

I n  summary, a pro ly l  residue const i tutes  an impasse fo r  dipept idyl  amino- 

1 

Proline- 

Tkius, it appears t h a t  dipept idyl  aminopeptidase 

peptidase I if it occurs i n  a peptide substrate  a t  any posi t ion other than 

a t  the  i n i t i a l  NII terminus. 2 

A var ie ty 'o f  non-physiological peptides were a l so  used t o  help delin- 

ea t e  t h e  substrate  s p e c i f i c i t y  of dipeptidyl aminopeptidase I. 

ample, Val-Leu-Ser-Glu-Gly w a s  degraded t o  Val-Leu, Ser-Glu, and glycine. 

For ex- 

Polyalanine (molecular weight 2000 t o  SOOO), Ala6 and A l a  

t o  Ala2 from t h e i r  NH2 termini.  

ducts  were A l a 2  and A l a  

were degraded 4 
However, i n  the case of Ala the  pro- 5' 

Ala was not hydrolyzed by dipept idyl  3' 3 
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aminopeptidase I. On the other hand, derivatives of Ala were eas i ly  

hydrolyzed, i . e . ,  the  amide, the B-naphthylamide, and the methyl es te r .  
2 

Phe 

Phe and Gly were hydrolyzed a t  re la t ive ly  slow ra tes .  It thus ap- 

pears t h a t  t r ipept ides  may be relat ively poor substrates f o r  dipeptidyl 

aminopeptidase I. 

and Gly were rapidly cleaved t o  dipeptides, whereas the  t r ipept ides ,  4 4 

3 3' 

Glu was hydrolyzed slowly, and u s 4  not a t  a l l .  4 
Tabbe 

were found 

erat ion of 

I presents a summary of a l l  the  NR -terminal dipeptides tha t  

t o  be susceptible t o  cleavage from model polypeptides. The l i b -  

many of these dipeptides was a l so  demonstrated with dipeptide 

2 

derivatives.  

B-naphthylamides, a l l  the  findings included i n  Table I were derived from 

However, except f o r  a few t e s t s  t h a t  were conducted with only 

the  use of peptide substrates.  An exmination of the dipeptides included 

i n  Table I shows tha t  a l l  the  commonly occurring NH,-terminal residues have 

been evaluated except f o r  cysteine &d isoleucine. 

residues (which represent the  penultimate residues 

aspar t ic  acid, cysteine, isoleucine, and threonine 

G 

Among the  COOH-terminal 

i n  the peptide substrate),  

are  not represented. A l -  

though no cysteine-containing NH -terminal dipeptides were tes ted,  it was 2 

found t h a t  a cysteic acid residue (terminal or penultimate) was no obstacle 

t o  the  action of dipeptidyl aminopeptidase I. 

1-65) of t he  t o t a l  number of possible dipeptides a re  represented i n  Table I. 

Since multiple combinations a re  shown for  most of t he  NH "terminal and 

COOH-terminal residues tes te& some f a i r l y  r e l i ab le  predictions should be 

possible  regarding the suscept ibi l i ty  of untested dipeptides. 

I n  summary, it appears t h a t  the degradation of a peptide by dipeptidyl 

Only a small percentage (about 

2 

aminopeptidase I can be completely blocked by ( a )  an NH2-terminal arginyl 

o r  l y s y l  residue, (b) a penultimate prolyl  residue, o r  (c )  any 
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dipeptide tha t  i s  bonded t o  the  imino nitrogen of a prolyl  residue. 

The only exception encountered was on Gly-Trp-B-naphthylamide (McDonald 

e t  a l .  1969b), a re la t ive ly  insoluble derivative.  However, since Gly- 

Trp-NH2 i s  hydrolyzed (Wurz e t  a l .  1962), the meaning of t h i s  negative 

r e s u l t  i s  of questionable significance. 

- 
' 

I n  s p i t e  of i t s  l imitations,  di-  

peptidyl aminopeptidase I can e ih ib i t  potent degradative ac t iv i ty .  For 

example, t he  t o t a l  number of bonds cleaved ( th i r teen)  i n  the  B chain of 

oxidized insu l in  i s  equal t o  the  n e t  effect  of trypsin, chymotrypsin, and 

pepsin, each act ing at i t s  own pH optimum. 

2.3 - .  Halide Requirement 

The halide requirement exhibited by rat l i v e r  and beef spleen d i -  

peptidyl aminopeptidase I is  v i r tua l ly  absolute fo r  the  hydrolysis of di-  

peptide p-naphthylamides (Fig. 3 ) .  

whether the  enzyme i s  equally dependent on halide ions f o r  t he  hydrolysis 

of polypeptides. 

the peptide substrate.  

a very pronounced chloride activation on polypeptide substrates.  Fig. 1 

includes an example of the amount of ACTH hydrolyzed i n  the absence of 

added chloride. Without added chloride ions, a small amount of Ser-Tyr 

and a t r ace  of Ser-Met were cleaved from ACTH a f t e r  30 minutes of incu- 

bation. However, with added chloride (16 mM) a good yield of t he  f irst  

four dipeptides was obtained i n  30 minutes. A very pronounced chloride 

requirement was a l so  eas i ly  demonstrated f o r  the  hydrolysis of glucagon 

by r a t  l i v e r  dipeptidyl aminopeptidase I. 

On the  other hand, it is  not known 

No e f f o r t  was made t o  remove contaminating salts from 

Even so, it was re l a t ive ly  eesy t o  demonstrate 

When chloride was withheld from 

a react ion mixture which otherwise shoved a n  extensive degradation of 

glucagon, t he  amount of His-Ser cleaved from the  NH2 terminus of glucagon 
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was barely discernible.  

The low Km values (0.1-0.2 mM a t  pH 6.0) exhibited on the B-naphthyl- 

amide substrates,  together with the l o w  concentrations of enzyme re- 

quired for the  fluorometric assay technique, made it re la t ive ly  simple 

t o  minimize halide contaminants, and maximize the  halide sens i t iv i ty  of 

the system. 

detection of t he  chloride requirement f o r  the p i tu i t a ry  enzyme (McDonald 

- e t  a l .  1965). By comparison, t he  dipeptide amides a re  normally used a t  

substrate concentrations t h a t  are  about 200 times greater.  The direct ,  

continuous recording, fluorometric assay method (McDonald e t  a l .  1969b) 

' 

This was undoubtedly a c r i t i c a l  fac tor  leading t o  the  i n i t i a l  

therefore seems t o  of fe r  an idea l  system f o r  k ine t ic  studies designed t o  

reveal the  nature of the  chloride effect .  

I n  Fig. 3, t he  rate response t o  halide concentration i s  shown f o r  t he  

hydrolysis of Gly-Phe-B-naphthylamide by rat l i v e r  dipeptidyl aminopepti- 

dase I. 

about 5 mM where the  r e l a t ive  effects  were C1- > Br- > I- > F-. 

and n i t r i t e  showed a l imited a b i l i t y  t o  subst i tute  f o r  the halides.  A t  

The response t o  chloride, bromide, and iodide was m a x i m a l  a t  

Nitrate  

l imi t ing  concentrations (< 2 mM) of these halides, Br- and I- seemed more 

e f fec t ive  than C1-. 

phate, sulfate ,  o r  cacodylate. The chloride actiVation was a l so  evident 

No activation was detected with acetate,  c i t r a t e ,  phos- 

on many other dipeptide p-naphthylamide substrates,  including basic ones 

such a s  Gly-Arg-B-naphthylamide and Fro-Arg-B-naphthylamide . 
Although the  mechanism of halide action i s  s t i l l  obscure, it can be 

assumed tha t  the  halide ion e i ther  makes some es sen t i a l  charge contri-  

bution a t  the  act ive center complex, which is postulated t o  be an acyl 

(dipeptidy1)-thiol e s t e r  (Voynick and Fruton 1968), or  it may be involved 

i n  a mul t i s i te  interact ion on the enzyme whereby the halide behaves as  



an "effector " 

ca ta ly t ica l ly  

t h a t  aids the 

act ive s t a t e .  

13 

substrate in  transforming the enzyme in to  a 

I n  any event, whatever the nature of the  

chloride effect ,  the  broad substrate specif ic i ty  exhibited by the enzyme 

shows t h a t  the reaction mechanism does not require the presence of a hy- 

drophobic s ide chain on the  residue containing the activated carbonyl 

group (Voynick and Fruton 1968). 

2.4 Kinetics 

L i t t l e  information i s  available concerning the  k ine t ics  of dipeptide 

cleavage from polypeptide substrates by dipeptidyl aminopeptidase I. 

However, there i s  some indication tha t  dipeptide B-naphthylamides may be 

used as substrates t o  gain information regarding the k ine t ics  of polypep- 

t i d e  hydrolysis. For example, the  kinetics of His-Ser-B-naphthylamide hy- 

dro lys i s  a t  pH 6.0 by the  rat l i v e r  enzyme was found t o  resemble the k ine t ics  

of His-Ser cleavage from glucagon. His-Ser-B-naphthylamide had a K of 

0.022 mM k 0.002 S.E., and glucagon 0.02T mM ? 0.01 S.E.  

m 

Although these 

values are very similar,  they are  exceptionally low compared t o  most other 

dipeptide B-naphthylamides (Table 2 ) .  Obviously, t he  K value found f o r  

glucagon applies only t o  the removal of the  first dipeptide (His-Ser). 

m 

The maximum turnover r a t e  constant, kcat, f o r  the  first dipeptide 

of glucagon, calculated from Vmm, was found t o  be about 81 sec-l. The 

-1 value of kcat/Km app was thereby estimated t o  be about 3,000 mM-' sec , re- 

f l ec t ing  a high degree of preference f o r  the glucagon substrate compared 

t o  many of the  dipeptide amides and es te rs  t ha t  have been tes ted  (Voynick 

and Fruton 1968; McDonald e t  a l .  1969b). Similarly, the  r a t  l i v e r  enzyme - 
exhibited a preference f o r  His-Ser-B-naphthylamide t h a t  was comparable t o  
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Ghat observed on glucagon. 

amide was about 116 sec , making k /K equal t o  about 5,300 mM-l 

sec 

on a molecular weight of 200,000. 

For example, t he  kcat f o r  His-Ser-@-naphthyl- 

-1 
c a t  m app 

The calculation of kcat values f o r  the rat l i v e r  enzyme w a s  based 

This value, which was estimated from 

-1 . 

I the f i l t r a t i o n  r a t e  of the  enzyme on a calibrated column of Sephadex G-ZOO 
I 

(Andrews 1965), compares with the  molecular weight of the  bovine spleen en- 

zyme calculated from sedimentation equilibrium measurements (Planta and 

Gruber 1964; Metrione e t  al. 1966). 

,. Glucagon and Gly-Phe-NH2 were both found t o  be competitive inhibi tors  

of His-Ser-B-naphthylamide hydrolysis by r a t  l i v e r  dipeptidyl aminopeptidase. 

I. Glucagon, however, with a Ki of 0.08 mM, was by far a b e t t e r  inhibi tor  

than Gly-Phe-NH2 w i t h  a Ki of about 4.7 1134. It was therefore evident t h a t  

glucagon, and probably a l so  His-Ser-B-naphthylamide, were bound t o  the  en- 

zyme more tenaciously than was Gly-Phe-MI2. 

I n  a reaction mixture containing 1.5 mM ACTH (B1-24-corticotropin) 

a t  pH 5.0, r a t  l i v e r  dipeptidyl aminopeptidase I cleaved the first dipeptide, 

Ser-Tyr, a t  a (near i n i t i a l )  velocity of about 24 pmoles min mg enzyme 

protein.  

-1 -1 

By the  time 84% of the Ser-Tyr had been cleaved, 20% of the  second 

dipeptide, Ser-Met, had been cleaved. I n  a similar react ion mixture, con- 

ta in ing  D-Ser -ACTH (D-Ser , Lys 

was cleaved a t  a r a t e  of only 5 pmoles min 

a f f i n i t y  was exhibited for the  second dipeptide, Ser-Met, as indicated by 

t h e  finding t h a t  20% of the Ser-Met had been cleaved by the  t i m e  D-Ser-L-Tyr 

1748 1-18 -@ -corticotropinamide ), D-Ser-L-Tyr 

mg . A r e l a t ive ly  far greater 

1 1 

-1 -1 

reached 23$. 

ACTH were a l so  studied as @-naphthylamide substrates, a t  pH 6.0. 

As seen i n  Table 2, the first four dipeptides cleaved from 

Ser-Tyr 

w a s  cleaved a t  a r a t e  of 28 (compared with 24 f o r  the  hormone), Ser-Met a t  

100, Glu-His a t  33, and Phe-Arg a t  23 pmoles min mg enzyme. -1 -I 
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Based on a l imited number of kinet ic  s tudies  comparing polypeptides 

and dipeptide derivatives as substrates f o r  dipeptidyl aminopeptidase I, 

it appears t h a t  t he  bulky B-naphthylamide substrates,  i n  contrast  with 

e s t e r s  and amides, may yield r e su l t s  t ha t  are more analogous t o  the action 

of the enzyme on poly-peptides. I n  Table 2, the  r a t e s  of hydrolysis are  

shown f o r  a var ie ty  of dipeptide B-naphthylamides. 

wherein the  same dipeptide has been shown t o  be susceptible t o  a t tack by 

Hormones are  c i ted  

the  enzyme. Exceptionally high r a t e s  of hydrolysis were observed on sub- 

s t r a t e s  containing a penultimate arginyl residue. Similarly, among a group 

of esters, Gly-Lys-OMe was  hydrolyzed most rapidly. 

In 'cont ras t  t o  reports describing i t s  preferen t ia l  a t tack  on hydro- 

phobic residues (Izumiya and B u t o n  1956; Planta e t  a l .  1964; Voynick 

and Fruton 1968), dipeptidyl aminopeptidase I from both rat  l i v e r  and bo- 

vine spleen, catalyzed the  cleavage of penultimate arginyl and ly sy l  bonds 

a t  r a t e s  that were, i n  general, many orders of magnitude higher than the  

rates observed on most other penultimate residues. Comparative studies 

with amides and methyl es te rs  have revealed tha t  B-naphthylamides give the  

lowest K values (0.1 t o  0.2 mM at  pH 6.0) w i t h  both the  rat l i v e r  and bovine 

spleen enzymes. 

comparable dipeptides are about 10 and 100 times higher, respectively 

(McDonald e t  a l .  1969b). 

m 

By comparison, K values for t he  e s t e r s  and amides of m 

2.5. Effect of pH 

Fruton and Mycek (1956) showed t h a t  bovine spleen dipeptidyl amino- 

peptidase I has a pH optimum close t o  6.0 f o r  t he  hydrolysis of Gly-Tyr-NH2. 

Although the  hydrolytic ac t iv i ty  of t h e  enzyme i s  generally measured a t  

pH 6.0 (Metrione e t  a l .  1966), a small amount of polymerization of 



16 

GJy-Arg-P-naphthylamide was detected a t  pH 6 using analyt ical  methods al- 

ready described (McDonald - e t  a l .  196913). 

digests  were maintained a t  pH 5.0, with a v o l a t i l e  buffer-activator mixture 

For t h i s  reason, polypeptide 

(pyridine-HC1-acetic acid-2-mercaptoethanol) . We have thus f a r  not a t -  

tempted t o  demonstrate transpeptidation using peptides as  substrates;  how- 

ever, studies concerned with the e f fec t  of pH on the  hydrolysis of peptides 

suggest t h a t  l i t t l e ,  i f  any, transpeptidation occurs. For example, the  pH 

optimum f o r  t he  cleavage of His-Ser from glucagon was unusually high. The 

accumulation of f r ee  His-Ser from glucagon was optimal a t  about pH 6.5. 

Even a t  pH 7.5, where polymerization (of dipeptide amides) usually pre- 

dominates (Nilsson and Fruton l96&), His-Ser accumulated a t  a r a t e  t h a t  

was 5% of the  optimal r a t e  at pH 6.5. Such a pH response approaches tha t  

obtained on Pro-Phe-NHZ, a substrate t ha t  i s  not susceptible t o  transpep- 

t i da t ion  (Izumiya and Fruton 1956), and is  cleaved optimally a t  pH 7.0 (Buton  

and Mycek 1956). 

t i m u m  on Pro-Arg-p-naphthylamide (McDonald e t  a l .  196911). I n  comparison 

Dipeptidyl aminopeptidase I a lso  exhibited a pH 7.0 op- 

with the pH optimum found on glucagon, a much lower and more d iscre te  pH 

optimum of 5.2 was found on His-Ser-p-naphthylamide. A t  pH 5.2 the  r a t e  of 

His-Ser l ibera t ion  from the p-naphthylamide w a s  about twice t h a t  found f o r  

glucagon; a t  pH 6.5 the  opposite was found; and a t  pH 6.0 the  r a t e s  were 

the  same. 

1 '  Using Asp (M )-angiotensin I1 as a substrate for t he  r a t  l i v e r  en- 2 

zyme, t h e  f irst  dipeptide (Asn-Arg) was cleaved optimally a t  pH 5.5. A t  

pH 7.0 t he  r a t e  w a s  reduced 5O$. 

cleaved optimally a t  about pH 6.5. 

The second dipeptide ( V a l - T p )  was 

A t  pH 5.5 Val-Tyr accumulated with a 

noticeable lag .  

about 40$ of the Val-Tyr was free.  

For example, a f t e r  7% of the.Asn-Arg had accumulated, 

However, a t  pH 7.0 Val-Tyr accumulated 
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a t  a r a t e  approaching t h a t  found f o r  the first dipeptide (Asn-Arg). 

t h e  other hand, t he  cleavage of Asp-Arg from synthetic human angiotensin 

occurred optimally a t  pH 4.5 o r  lower. 

On 

Although the  optimal pH may vary f o r  each dipeptide cleaved from a 

polypeptide by dipept idyl  aminopeptidase I, it has thus far been possible 

t o  carry polypeptide degradation t o  completion ( t o  the  extent possible) 

between pH 5.0 and 5.5. 

2.6. Activators and Inhib i tors  

The sulfhydryl requirement of beef spleen dipept idyl  aminopeptidase I 

and t h e . e f f e c t s  of various inhibi tors  were studied by muton and Mycek 

(1956) using dipeptide amide substrates .- Similarly, i n  our studies,  Hg ++ . , 
p-chloromercuriphenyl sulfonate, and oxidized glutathione exhibited re-  

vers ib le  inhibi t ion.  If the  concentrated enzyme were first act ivated with 

a su l f iydry l  compound and the act ivator  d i lu ted  out (under a nitrogen at-  

mosphere), it was possible t o  obtain a 73% inhib i t ion  of Gly-Arg-B-naphthyl- 

amide hydrolysis by incorporating oxytocin, a d isu l f ide  hormone, a t  

-6 4 x 10 M. 

extraordinary r a t e s  of hydrolysis on a rg inyl  and l y s y l  bonds, pancreatic 

t ryps in  inh ib i to r  was t e s t ed  and found t o  be ineffect ive,  even a t  high 

l eve l s .  

f a i l e d  t o  i n h i b i t  the  degradation of angiotensin 11, a r e s u l t  t h a t  agreed 

w i t h  an e a r l i e r  study using a Gly-Ty-r-NH2 substrate  (Fruton and Mycek 1966). 

When dipept idyl  aminopeptidase I w a s  f i r s t  found t o  exhibi t  

Preincubation of the  enzyme i n  1' mM diisopropylfluorophosphate 

2.7. Subcellular Localization 

2.7.1. Biochemical s tudies  

Early evidence fo r  the lysosomal loca l iza t ion  of dipeptidyl aminopeptidase I 
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was obtained by conventional methods of d i f f e r e n t i a l  centr i fugat ion.  

The a c t i v i t y  was first found i n  mitochondrial f rac t ions  by Finkenstaedt 

(1957). The probabi l i ty  of a lysosomal loca l iza t ion  was fur ther  

strengthened by the work of Bouma and Gruber (1966), who showed t h a t  the 

l i v e r  enzyme was closely associated with acid phosphatase a f t e r  density- 

equilibrium centrifugation of a lysosome-rich f r ac t ion  t h a t  w a s  pre- 

pared according t o  de Duve e t  al.  (1955). 

f o r  t he  subcel lular  f ract ionat ion of rat p i t u i t a r y  glands (McDonald e t  a l .  

1968b). 

amide). and acid phosphatase were located i n  the  same region of t h e  sucrose 

A similar  technique w a s  used - 

Both dipept idyl  aminopeptidase I (assayed on Ser-Tyr-B-naphthyl- 

gradient.  Pe l l e t s  prepared from each gradient f r ac t ion  were examined by 

e lec t ron  microscopy. The 1ysosomes.were shown t o  be concentrated a t  an 

isopycnic point t h a t  w a s  coincident with the maximum a c t i v i t i e s  of di-  

pept idyl  aminopeptidase I and ac id  phosphatase. Dipeptidyl aminopepti- 

dase 11, assayed on Lys-Ala-B-naphthylamide, was a l so  located here. A 

high latency w a s  exhibited by both dipeptidyl aminopeptidase I and 11. 

P r i o r  t o  t h e  addition of Triton X-100, about 95% of these a c t i v i t i e s  was 

masked and sedimentable. I n  contrast  t o  the  preceding studies,  Shibko and 

Tappel (1965) were unable t o  locate dipept idyl  aminopeptidase I i n  kidney 

lysosomes, nor did they demonstrate i t s  presence i n  any other subcellular 

f r ac t ion .  The i n a b i l i t y  of the l a t t e r  authors t o  loca l ize  the enzyme i s  

present ly  inexplicable, but may be a t t r i bu tab le  t o  the  in sens i t i v i ty  of 

t h e i r  assay method, which involved t h e  use of ninhydrin f o r  the  detection 

of Gly-Phe-NHZ hydrolysis.  

system was def ic ien t  i n  C1-, 

Furthermore, it appears t h a t  t h e i r  assay 

2.702. Electron microscopy 

Recent unpublished s tudies  have demonstrated the presence of dipept idyl  
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&ninopeptidase 1 i n  the  lysosomes of r a t  l i v e r  and an ter ior  p i t u i t a r y  by 

electron microscopy, using both histochemical and immunohistochemical tech- 

niques. 

Pro-Arg-4 -methoxy-B-naphthylaide was adopted as the  h i  s t  ochemical sub- 

s t r a t e  f o r  the  following reasons. 

t i d y 1  aminopeptidase I a t  pH 5.5 a t  a r a t e  comparable t o  t h a t  found on Pro- 

Arg-@-naphthylamide (Table 2 )  ; t he  NH2-terminal prol ine makes the  substrate  

r e s i s t a n t  t o  the  act ion of aminopeptidases, and prevents i t s  polymerization 

by dipept idyl  aminopeptidase I; the  substrate i s  readi ly  soluble; and the  

react ion product, 4-methoxy-~-naphthylamine, which i s  less soluble than B- 

It is  hydrolyzed spec i f i ca l ly  by dipep- 

naphthylamine, can be reacted simultaneously with a diazonium sal t  such as  

fas t  blue B o r  hexazotized pararosaniline t o  furnish a s tab le  azo dye t h a t  

che la tes  metals t o  provide the necessary color i n t ens i ty  o r  e lectron opacity 

(Rutenburg e t  a l .  1968; Smith 1969,). Such a technique was used t o  demon- 

s t r a t e  dipept idyl  aminopeptidase I a t  pH 5 .5  i n  lysosomes and autophagic 

bodies i n  the l i v e r s  of glucagon-treated r a t s  (Fig. 4) ,  and i n  the  lysosomes 

of l i v e r s  taken from cont ro l  animals (Fig. 5 ) .  

t o  rats i n  accordance with Deter and de Duve (1967) f o r  the  purpose of in -  

Glucagon w a s  administered 

ducing a n  autophagic process within hepatocytes. 

t o  have a lysosomal d i s t r ibu t ion  i n  the gonadotrophic c e l l s  of t he  r a t  

p i t u i t a r y  gland (Fig. 11). 

The enzyme w a s  a l so  shown . 

Dipeptidyl aminopeptidase I was a l so  detected immunohistochemically 

using a technique developed by Nakane and Pierce (1967) f o r  t he  loca l iza t ion  

of antigens.  Sections of r a t  l i v e r  were reacted with a rabbi t  antiserum 

prepared against  purif ied r a t  l i v e r  dipeptidyl aminopeptidase I. The s i t e s  

of bound rabbi t  r-globulin were detected with a goat ant i - rabbi t  y-globulin 

labeled with horseradish peroxidase. With such a technique it was possible 
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t o  show t h a t  the discrete  localization of dipeptidyl aminopeptidase I seen 

by l i g h t  microscopy (Fig 6) was at t r ibutable  t o  a lysosomal local izat ion 

as seen by electron microscopy (Fig. 7). 

The imunochemical resu l t s  verified those obtained histochemically 

with l?ro-Arg-4-methoxy-B-naphthylamide, and demonstrated t h a t  dipeptidyl 

aminopeptidase I i s  exclusively lysosomal i n  the  l i v e r  and anter ior  p i tu i -  

t a r y  gland of the r a t .  

3 .  DIPEPTIDYL AMlNOPEPTIDASE I1 

Another lysosomal enzyme has been discovered tha t  has the properties 

of a "dipeptidyl aminopept-idase" (McDonald e t  a l .  19683; 1968b). This en- 

zyme was first detected i n  extracts  of  bovine anter ior  p i tu i t a ry  glands, 

but has since been shown t o  have a wide dis t r ibut ion.  A s  w i l l  be seen 

(Table 7), the  thyroid gland appeared t o  be the r iches t  source, and here, 

too, the  enzyme had a lysosomal dis t r ibut ion.  

3.1 .  Speci f ic i t ies  and Properties 

Dipeptidyl aminopeptidase I1 was i n i t i a l l y  detected i n  p i tu i t a ry  ex- 

t r a c t s  by i ts  a b i l i t y  t o  hydrolyze Lys-Ala-B-naphthylamide a t  pH 5.5 

(K =0.011 mM a t  37°C). This substrate i s  r e s i s t an t  t o  hydrolysis by dipep- ' 

t i d y 1  aminopeptidase I. 

naphthylamine. The responsible enzyme, or iginal ly  termed "dipeptidyl 

arylamidase 11" (McDonald e t  a l .  1968b), acted on a l imited number of di-  

peptide p-naphthylamide substrates having unsubstituted NHz termini. 

m 

The reaction products were Lys-Ala and f ree  B- 

The enzyme was purified more than 1,000-fold over a pH 5.5 aqueous ex- 

t r a c t  of bovine anter ior  p i tu i ta ry  glands (McDonald e t  a l .  1968a). I t s  spe- 

c i f i c  a c t i v i t y  on Lys-Ala-B-naphthylamide and Ala-Ala-Ala increased i n  para l le l .  
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The purif ied enzyme hydrolyzed Lys-Ala-B-naphthylamide a t  18, us-Ala-OMe 

a t  27, and Ala-Ala-Ala a t  44 pmoles min mg protein.  A s  shown i n  Table 

3, dipept idyl  aminopeptidase I1 did not a c t  on fluorogenic subs t ra tes  used 

f o r  t he  assay of dipeptidyl aminopeptidase I, i . e . ,  Gly-Arg-B-naphthylamide 

and Gly-Phe-B-naphthylamide. 

lyzed. 

spec i f i c i ty  on t r ipept ides  (Table 4 ) ,  no a c t i v i t y  w a s  detected on t e t r a -  

methionine, t r i a l an ine  methyl e s t e r ,  te t raalanine,  hexaalanine, o r  poly- 

alanine.  Thus, i t s  spec i f i c i ty  on alanine peptides was the  reverse of t h a t  

found f o r  dipept idyl  aminopeptidase I (McDonald e t  a l .  19691~). 

of dipept idyl  aminopeptidase. I1 on other polypeptides and physiological sub- 

s t r a t e s  has, however, not ye t  been explored. Typical of a "dipeptidyl amino- 

peptidase," pur i f ied  dipept idyl  aminopeptidase I1 cleaved MI -terminal di-  

peptides from dipeptide der ivat ives  as wel l  as from t r ipept ides .  

Ser-Met was cleaved from Ser-Met-OMe and Ser-Met-Glu, but fl-benzyloxycarbonyl- 

Ser-Met-Glu w a s  not hydrolyzed. 

-1 -1 

Amino acid f3-naphthylamides were not hydro- 

Whereas dipeptidyl aminopeptidase I1 exhibited a f a i r l y  broad 

The act ion 

2 

For example, 

Dipeptidyl aminopeptidase I1 had a pH 5.5  optimum on Lys-Ala-@-naphthyl- 

amide, and a 4.5 optimum on Ala-Ala-Ala. No  metal, halide, o r  sulfhydryl 

dependence# -detected, but a rather  unique cat ion s e n s i t i v i t y  was ob- 

served. 

h ib i t ed  by cations,  and the  percent inhibi t ion was d i r ec t ly  proportional t o  

t h e  square root  of t he  atomic o r  molecular weight of t he  cat ion.  

T r i s  i on  (Ki=0.32 mM) and puromycin (Ki=0.02 mM) were more inh ib i tory  than 

sodium ion (Ki= l .8  mM). When ra t  t i s sues  were surveyed f o r  t h e i r  r e l a t i v e  

a c t i v i t y  on Lys-Ala-B-naphthylamide a t  pH 5.5 (Table 7 ), t h e  a c t i v i t y  measured 

i n  a l l  the  t i s sues  was shown t o  be strongly inhibi ted by T r i s  ions. 

-.wzt;L 

The hydrolysis of Lys-Ala-B-naphthy1ami.de w a s  competitively in- 

Accordingly, 

This 

f inding was tkken as presumptive evidence f o r  the  act ion of a common enzyme. 

p-Chloromercuriphenyl sulfonate and EMlA inh ib i t ied  nei ther  t he  hydrolysis of 
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Ala-Ala-Ala nor Lys -Ala-B-naphthylamide . 

3 2. Subcellular Localization 

Biochemical s tudies  

A lysosomal d is t r ibu t ion  w a s  f i r s t  indicated f o r  dipeptidyl aminopep- 

t idase  I1 i n  the rat p i tu i t a ry  gland by conventional methods of d i f fe r -  

e n t i a l  and equilibrium-density centrifugation. 

including those concerned with the latency and morphology of isopynic 

fractions,  have already been reported (see section 2.7.1). 

Electron microscopy 

The r e su l t s  of these studies, 

l$s-Ala-4-methoxy-~-naphthylamide was  adopted as a specif ic  substrate 

for the  l i g h t  and electron microscopic local izat ion of dipeptidyl amino- 

peptidase I1 i n  t he  p i tu i t a ry  and thyroid of the  r a t .  The histochemical 

react ion w a s  conducted a t  pH 5.5. m e  technique w a s  the same as already 

mentioned f o r  the local izat ion of dipeptidyl aminopeptidase I (see section 

2.7.2).  

Acid phosphatase is  known t o  have a lysosomal d is t r ibu t ion  i n  c e l l s  of 

t he  an ter ior  p i tu i t a ry  (Fig. 8).  Similarly, dipeptidyl aminopeptidase 11, 

&ich is  d iscre te ly  localized i n  the c e l l s  of the  anter ior  p i tu i t a ry  gland 

(Fig. 9), was found t o  have a lysosomal dis t r ibut ion,  as  shown f o r  a soma- 

totrope (Fig. 10). These findings confirmed the r e su l t s  of an e a r l i e r  bio- 

chemical study (McDonald e t  a l .  1968b), t h a t  indicated a lysosomal dis t r ibu-  

t i o n  f o r  dipeptidyl aminopeptidase I1 i n  t he  r a t  p i tu i t a ry  gland (see section 

2.7.1). 

Dipeptidyl aminopeptidase I1 was a l so  found t o  have a lysosomal d i s t r i -  

bution i n  the  r a t  thyroid, the t issue r iches t  i n  t h i s  ac t iv i ty  (see Table 

7 ) .  A s  shown i n  Figs. 1 2  and 13, the enzyme 'act ivi ty  was located 
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i n  lysosomes residing within the fo l l icu la r  c e l l s .  

t o  be more numerous near the pinocytosing (apical)  surface bordering the  

The lysosomes appeared 

colloid.  

f o r  dipeptidyl aminopeptidase I1 i n  a l l  t he  c e l l s  of the secretory epithe- 

The f o l l i c l e  shown i n  Fig. 14 reveals a discrete  local izat ion 

lium. 

The cleavage of NH -terminal dipeptides from cer ta in  polypeptides 2 

can a l so  be effected by a dipeptidyl aminopeptidase which has a hydrolytic 

optimum a t  pH 8 t o  9. 

t ions  obtained by extraction of anterior p i tu i t a ry  glands a t  pH 5.5 

and Nuenke 1967). Dipeptidyl aminopeptidase I11 was assayed fluorometri- 

ca l ly  by monitoring the release o f  B-naphthylamine from Arg-Arg-g-naphthyl- 

amide a t  pH 9. This substrate was-not hydrolyzed by dipeptidyl aminopep- 

t i dase  I, 11, or I V .  Dipeptidase and aminopolypeptidase ( E l l i s  and Perry 

The peptidase was first detected i n  aqueous solu- 

( E l l i s  

1966) showed negligible ac t iv i ty  on Arg-Arg-B-naphthylamide a t  pH 9.0. 

Arg-Arg-B-naphthylamide can therefore be employed t o  assay dipeptidyl amino- 

peptidase I11 with a high degree of specif ic i ty .  

4.1. Specif ic i t ies  and Properties 

Dipeptidyl aminopeptidase 111, isolated from bovine p i tu i t a ry  glands, 

hydrolyzed Arg-Arg-B-naphthylamide optimally a t  pH 8.7, and fo r  f u l l  ac t iv i -  

t y  required act ivat ion by sulfhydryl compounds. 

by p-chloromercuriphenyl sulfonate o r  N-ethyl maleimide and was restored 

by treatment with sulfkydryl compounds. Although EDTA (1 mM) is  highly 

inhibi tory,  the  enzyme did not appear t o  have a metal requirement since 

Activity was abolished 

the a c t i v i t y  was restored e i the r  by complexing the EM!A with a var ie ty  of 

metal l ic  ions o r  removing it by dialysis .  
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Analysis of the  k ine t ics  of Arg-Arg-@-naphthylamide hydrolysis i n  

The r a t e  0.0625M T r i s - H C 1  a t  pH 9 and 37°C yielded a Km of 0.0083 mM. 

of hydrolysis was markedly decreased by substrate  concentrations greater  

than 0.05 mM. 

t i ons  greater than 0.05 mM, completely inhibited the hydrolytic ac t iv i ty .  

Lys-Lys-B-naphthylamide, which was not hydrolyzed by dipeptidyl aminopep- 

t idase  111, w a s  equally inhibitory.  

Moreover, the hydrolysis product, Arg-Arg, a t  concentra- 

Dipeptidyl aminopeptidase I11 did not hydrolyze the common monoamino 

O f  the  dipeptide B-naphthylamides only Arg-Arg-@- acid B-naphthylamides. 

naphthylamide was cleaved, and no hydrolysis was detected on the deriva- 

t i v e s  of Lys-Lys, Ala-Ala, -Ser-Tyr, Leu-Ala, Gly-Pro, Gly-Arg, Gly-Phe, 

His-Ser o r  Ser-Met. A t  pH 7.5, Ws-Ala- and Ala-Ala-B-naphthylamj.de were 

hydrolyzed a t  l e s s  than 2% of the rate observed on Arg-Arg-@-naphthy1ami.de 

a t  pH 9.0. 

aminopeptidase I1 as  indicated by different pH optima and an absence of 

act ivat ion by sulfhydryl compounds. The absence of action on the  fl-sub- 

s t i t u t e d  derivative, benzyloxycarbonyl-Arg-Arg-P-naphthylamide, suggested 

t h a t  the  enzymewas a dipeptidyl aminopeptidase. 

This was  ascribed t o  contamination with t races  of dipeptidyl 

A s imilar  a t tack  was observed on peptide substrates,  except t h a t  the  en- 

zyme showed a broader substrate spec i f ic i ty  on peptides than was f i r s t  i n -  

dicated by s tudies  conducted on dipeptide @-naphthylamides. This was con- 

firmed by examining the products generated from a se r i e s  of alanine, ly-  

sine, and phenylalanine polypeptides. The substrates and the reaction pro- 

ducts formed on complete hydrolysis were as  follows: 

Ala4- > 2 AlaZ Lys4-> 2 u s 2  

WS5- > u s 2  + Lys 3 
, 

3 Ala5- > A l a Z  + Ala 

Ala6-> 3 AlaZ Phe4-> 2 R e Z  
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On peptide substrates the enzyme had a pH optimum a t  about 8.0. 

tamic acid and tetraglycine were not hydrolyzed. 

curred when the NH 

it was concluded t h a t  the hydrolysis occurred sequentially from the  NH 

terminus. Since neither dipeptides nor t r ipept ides  were cleaved, an ad- 

d i t i ona l  requirement f o r  t he  hydrolysis of simple peptides i s  t h a t  they 

contain a t  l e a s t  four amino acid residues. 

Tetraglu- 

Since no hydrolysis oc- 

terminus of tetraalanine was blocked by acetylation,,  2 

2 

Certain polypeptides containing mixed amino acid residues were a l so  

cleaved with the release of dipeptides. Thus, Val-Leu-Ser-Glu-Gly was hy- 

drolyzed t o  Val-Leu and Ser-Glu-Gly. 

the  sequential  release of Asn-Arg and 

lu s t r a t ed  i n  Fig. 15. Further a t tack 

been prevented by the  presence of the  

ported fo r  ‘dipept idyl  aminopeptidase 

The hydrolysis of angiotensin 11 w i t h  

Val-Tyr f romthe  NH terminus i s  il- 2 

on the resu l t ing  te t rapept ide may have 

imide bond of proline as  has been re- 

I and several  other peptidases. I n  

contrast  t o  the  degradative e f fec ts  of dipeptidyl aminopeptidase I on ACTH, 

d ipept idyl  aminopeptidase 111 did not a t tack t h i s  peptide hormone detect- 

ably. Thus, while fur ther  studies are needed t o  define more precisely the  

spec i f i c i ty  of dipeptidyl aminopeptidase 111, it i s  apparent that ,  i n  com- 

parison t o  dipeptidyl aminopeptidase I, i t s  spec i f ic i ty  i s  more res t r ic ted .  

However, t he  ac t iv i ty  of dipeptidyl aminopeptidase I11 does appear t o  com- 

plement t h a t  of dipeptidyl aminopeptidase I, inasmuch as NK -terminal l y sy l  2 

or arginyl  residues blocked the action of dipeptidyl aminopeptidase I, but 

not t h a t  of dipeptidyl aminopeptidase 111. 

4 2. Subcellular Localization 

Different ia l  centrifugation of sucrose homogenate5 of bovine anter ior  

p i t u i t a r y  glands revealed tha t  95$ o f  the  dipeptidyl aminopeptidase I11 was 

local ized i n  the c e l l  sap. 
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5. DIPEFTIDYL AMINOPEPTIDASE I V  

Ropsu-Havu and h i s  colleagues a t  the 

( "GLY-PRO NAPHTRYLAMIDASE" ) 

University of Turku, Finland, 

have described an in t r ace l lu l a r  enzyme t h a t  hydrolyzes Gly-Pro-@-naphthyl- 

amide. This enzyme, cal led "Gly-Pro naphthylamidase" by these workers, 

was  first encountered i n  commercial preparations of porcine kidney acylase, 

and i n  rat  l i v e r  ex t rac ts  (Hopsu-Havu and Glenner 1966). 

f i e d  from ra t  l i v e r  (Hopsu-Haw and Sarimo 1967) and porcine kidney (Hopsu- 

Havu - e t  al .  1968) showed comparable properties.  

s p e c i f i c i t y  reported f o r  this enzyme, which has been confirmed and ex- 

tended i n  our Laboratory, it seemed appropriate t o  c l a s s i fy  t h i s  enzyme 

as a "dipeptidyl aminopeptidase." Herein, Gly-Pro naphthylamidase i s  

r e fe r r ed  t o  as dipeptidyl aminopeptidase I V .  

The enzyme puri- 

Based on the  substrate  

. 5.1. Spec i f ic i t ies  and Properties 

Hopsu-Ham and Sarimo (1967) showed t h a t  purif ied dipept idyl  aminopep- 

t i d a s e  I V  hydrolyzed Gly-Pro-B-naphthylamide a t  pH 7.8 t o  y ie ld  Gly-Pro 

and f r e e  @-naphthylamine. The 

B-naphthylamine react ion product was diazotized with f a s t  garnet GBC and 

assayed color imetr ical ly  . P-Benz y loxycarb owl- Gly-Pro -B- naphthylamide 

w a s  not hydrolyzed, and negligible ra tes  were observed on amino acid B- 

naphthylamides. 

of Gu-Pro-f3-naphthylamide, Leu-Leu-B-naphthylamide a t  g$ and Ala-Ala-  

B-naphthylamide a t  7%. 

No f r e e  glycine o r  proline was detected. 

Proline f3-naphthylamide w a s  hydrolyzed a t  O. 2% t h e  r a t e  

Substrate spec i f ic i ty  s tudies  were a l so  conducted i n  t h i s  Laboratory 

using a purif ied preparation of r a t  kidney dipept idyl  aminopeptidase IV 

t h a t  w a s  generously provided by D r .  Hopsu-Ham. I n i t i a l l y ,  t h i s  
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'preparation had a specif ic  ac t iv i ty  on Gly-Pro-B-naphthy1ami.de of 30 pmoles 

min mg protein a t  pH 8.0. A s  i l l u s t r a t ed  i n  Table 5 ,  Gly-Pro-B-naph- 

thylamide appeared t o  be the bes t  fluorogenic substrate  for t h e  assay of 

-1 -1 

t h e  enzyme. 

and the  i n i t i a l  r a t e s  of hydrolysis were compared. 

from the  origin,  which indicated a dipeptide cleavage rather  than a step- 

w i s e  breakdown of the substrate.  

slowly, and not at  a l l  when aspart ic  acid was NH2-terminal. 

ginine or  lysine residues did not prevent hydrolysis. The assay substrate 

f o r  dipeptidyl aminopeptidase I1 (Lys-Ala-B-naphthylamide ) was a l so  hydro- 

Assays were conducted fluorometrically (McDonald e t  a l .  1966a), 

Rates were l i nea r  

Penultimate a lanyl  bonds were hydrolyzed 

Terminal ar-  

lyzed by dipeptidyl aminopeptidase I V .  However, the two enzymes have 

widely separated pH optima, and this should preclude any interference i n  

the assay of dipeptidyl aminopeptidase I1 i n  crude extracts .  The assay sub- 

s t r a t e s  f o r  dipeptidyl aminopeptidases 1 and I11 were not hydrolyzed. A s  

judged by i t s  action on the  B-naphthylamide substrates,  dipeptidyl amino- 

peptidase IV may prove t o  have a very select ive degradative ro le  i n  vivo. -- 
Its  preference f o r  proline bonds suggests t h a t  collagen fragments may be 

attacked. 

I ts  aminopeptidase ac t iv i ty  was  a l so  demonstrated on Gly-Pro-Ala and 

Gly-Pro-Gly-Gly (Hopsu-Ham and Sarimo 1967). The NH2-terminal dipeptides 

were cleaved from these substrates,  but not from #-benzyloxycarbonyl-Gly- 

Pro-Leu-Gly-Pro. These r e su l t s  have been confirmed i n  our Laboratory. I n  

addition, we have found t h a t  Leu-Pro-Gly-Gly was readi ly  s p l i t ,  whereas 

Gly-Pro-Pro was not attacked. It has a l so  been reported t h a t  hemoglobin 

w a s  not attacked (Hopsu-Havu and Glenner 1966). 

Purif ied dipeptidyl aminopeptidase I V  i s .uns tab le  below pH 5.0. However, 

i n  crude ex t rac ts  it to l e ra t e s  24 hours of  incubation a t  pH 4.0 and 37°C. 
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I n  fac t ,  t h i s  i s  the best  way t o  solubi l ize  t h i s  particle-bound enzyme f o r  

the  purpose of pur i f ica t ion  (Hopsu-Ham and Sarimo 1967). We have found 

t h i s  enzyme t o  be present i n  autolyzed spleen and l i v e r  f rac t ions  used t o  

purify lysosomal enzymes such as dipeptidyl aminopeptidase I, and cathepsins 

B and B ' .  

Dipeptidyl aminopeptidase I V  from both rat  l i v e r  (Hopsu-Havu and 

Sarimo 1967) and porcine kidney (Hopsu-Havu e t  a l .  1968) had a pH optimum 

of 7.8 on Gly-Pro-B-naphthylamide- 

of 0.15 mM and a molecular weight of about 25O,OOO, t h e  porcine kidney en- 

zyme had a Km of 0.3 mM and a molecular weight of Z70JOO0. However, these 

differences a re  of questionable significance.  

Whereas the  r a t  l i v e r  enzyme had a K m 

The enzymatic a c t i v i t y  of these preparations was not affected by su l f -  

hydryl compounds, t h i o l  reagents, organophosphorus compounds, or  chelat ing 

agents. 

i nh ib i t i on  between and M. 

Certain heavy metals, i .e . ,  Pb*, Hg++, and Zn", showed a strong 

5.2.  Subcellular Localization 

Dipeptidyl aminopeptidase IV was located i n  microsomal f rac t ions  pre- 

I n  f ac t ,  the  pared from ra t  l i v e r  ex t rac ts  by d i f f e r e n t i a l  centrifugation. 

l i v e r  enzyme w a s  f i r s t  purif ied (600 fo ld )  from a microsomal f r ac t ion  t h a t  

w a s  allowed t o  autolyze a t  pH 4.0 t o  so lubi l ize  the  enzyme (Hopsu-Havu and 

Sarimo 1967). 

Hopsu-Haw and Ekfors (1969) have used Gly-Pro-B-naphthylamide i n  a 

histochemical procedure t o  loca l ize  the enzyme i n  r a t  kidney, the  organ 

r i c h e s t  i n  t h i s  a c t i v i t y  (see Table 7) .  Their r e su l t s  showed a concentra- 

t i o n  of a c t i v i t y  i n  the proximal convoluted tubul i ,  and somewhat l e s s  i n  

t h e  glomeruli. I n  the  ovaries, f a i r l y  intense s ta ining was observed i n  at- 

rophic f o l l i c l e s  and i n  the f ibroblasts .  I n  skin, the  dermal f ibroblas t s  showed 



intense staining. . 
I n  o w  Laboratories, Gly-Pro-4-methoxy-B-naphthylamide has been adopted 

as a histochemical substrate f o r  the local izat ion of dipeptidyl aminopepti- 

dase I V  by both l i g h t  and electron microscopic techniques (see section 

2.7.2).  However, a t  t h i s  t i m e ,  only the r e su l t s  of l i g h t  microscopy have 

been completed. 

heaviest s ta ining was observed i n  the luminal border of proximal c e l l s .  

I n  agreement w i t h  Hopsu-Ham and Ekfors (1969), t he  

6. DISCUSSION 
I 

The u t i l i z a t i o n  of dipeptide B-naphthylamide substrates has f a c i l i t a t e d  

the  recognition and purif icat ion of a c lass  of peptidases capable of cleav- 

ing msubs t i tu ted  NR -terminal dipeptides from a d ivers i ty  of polypeptides. 2 

The spec i f ic i ty  of t h i s  c lass  of peptidases ranges from the ra ther  general 

a t tack  exhibited by dipeptidyl aminopeptidase I t o  the r e l a t ive ly  high se- 

l e c t i v i t y  f o r  pro ly l  bonds which is displayed by dipeptidyl aminopeptidase 

I V .  The former enzyme possesses amidase and esterase a c t i v i t i e s  and at tacks 

peptides ranging i n  s i ze  from four residues as i n  te t raalanine t o  peptides 

as la rge  as ACTH. Certain t r ipept ides  are  hydrolyzed but a t  re la t ive ly  

low ra t e s .  Dipeptidyl aminopeptidase 11, on the  other hand, seems r e s t r i c t ed  

t o  the  cleavage of t r ipept ides  and dipeptide es te rs ;  i t s  ac t iv i ty  on large 

peptides has not yet been tes ted.  

hydrolyze peptides containing fewer than four residues, nor does it at tack 

dipeptide amides and es te rs .  

ac t ive  pr inc ipa l ly  on the  penultimate pro ly l  bond of t r ipept ides  and t e t r a -  

peptides, but data i s  no t  available regarding the ac t iv i ty  on la rger  proline- 

containing peptides. 

Dipeptidyl aminopeptidase I11 does not 

Dipeptidyl aminopeptidase I V  appears t o  be 

The general properties of the presently known members 

of t h e  class of dipeptidyl aminopeptidases a re  summarized i n  Table 6. 



, The dipept idyl  aminopeptidases are ubiquitously d is t r ibu ted  i n  the t i s -  
). 

sues of the  ra t .  However, it i s  evident t h a t  each enzyme displays a 

charac te r i s t ic  pa t te rn  of d i s t r ibu t ion  among t h e  various t i s sues  (Table 

7). Liver and spleen ex t rac ts  a r e  exceptionally r i c h  i n  dipeptidyl amino- 

peptidase I whereas the  thyroid and spleen contain the  highest concentra- 

t i o n s  of dipept idyl  aminopeptidase 11. Using Gly-Phe-NH as substrate,  

Bouma and Gruber (1964) have observed essent ia l ly  t h e  same t i s sue  d i s t r i -  

2 

bution of dipept idyl  aminopeptidase I. In comparison with assays involving 

ammonia diffusion, the  highly sensi t ive fluorometric method f a c i l i t a t e d  the  

d i lu t ion  of t i s s u e  inhibi tors ,  and eliminated complications t h a t  often a r i s e  

from endogenous sources of ainmonia. Although Ser-Tyr-B-naphthylamide was 

adopted f o r  our t i s s u e  survey of dipeptidyl adnopeptidase I, t he  s e n s i t i v i t y  

of t h e  assay could have been increased a t  l e a s t  ten-fold through the  use of 

Gly-Arg-B-naphthylamide as the substrate.  However, it was suspected t h a t  

cathepsin B' m i g h t  a l so  hydrolyze t h i s  substrate  since it was  reported t o  hy- 

drolyze f-benzoyl-Arg-p-nitroanilide optimally a t  pH 5.5  (Otto 1967). 

l a t e r  found t h a t  our preparations of purif ied cathepsin B' (McDonald e t  a l .  

1970) hydrolyzed Gly-Arg-B-naphthylamide a t  3076 of t he  r a t e  f o r  f -benzoyl -  

W e  

Arg-B-naphthylamide. 

drolyzes Gly-Arg-B-naphthylamide 300 times f a s t e r  than does pur i f ied  cathepsin 

B', it therefore  seems feas ib le  t o  use Gly-Arg-B-naphthylamide f o r  the  assay 

of dipept idyl  aminopeptidase 1 i n  crude ex t rac ts .  

Since we now know t h a t  p l r i f i e d  aminopeptidase I hy- 

The rat  jejunum was found t o  contain a high l e v d o f  dipept idyl  aminopep- 

t i d a s e  I ac t iv i ty .  Mucosal scrapings were sometimes found t o  approach spleen 

as a r i c h  source of t h i s  ac t iv i ty .  The je juna l  a c t i v i t y  i n  homogenates w a s  

i nh ib i t ed  t o  the  same extent as  the l i v e r  enzyme by an  antiserum t o  the  rat 

l i v e r  enzyme. The antiserum w a s  effect ive a t  a 1:40,000 d i lu t ion  i n  the  fluoroinetrlc 
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assay system. 

antiserum did not inh ib i t  dipeptidyl aminopeptidase 11. 

t r a t i o n  of dipeptidyl aminopeptidase I i n  the je juna l  mucosa suggests t h a t  

this peptidase may be s ignif icant ly  involved i n  the  high ce l lu l a r  turnover 

t h a t  

dation of absorbed peptides. 

Normal rabbi t  serum had no ef fec t  on the ac t iv i ty ,  and the 

The high concen- 
- 

occurs i n  mucosal epithelium and possibly a l so  i n  the  terminal degra- 

Ropsu-Hava and Rintola (1968) obtained the p a r t i a l l y  purif ied enzyme 

from kidney t i s sue  and found it t o  pa ra l l e l  the  spec i f ic i ty  and act ivat ion 

requirements of dipeptidyl aminopeptidase I obtained from l iver .  The kid- 

ney, as  already noted by Hopsu-Ham and Ekfors (1969) contains a remarkably 

high concentration of dipeptidyl aminopeptidase I V .  

Changes i n  the  levels  of the  dipeptidyl aminopeptidases of t he  anter- 

ior p i t u i t a r y  were observed by Vanha-Perttula (1969) following a l te ra t ion  

of t he  functional s t a tus  of the  gland by castrat ion o r  treatment with es t ra -  

d i o l  o r  testosterone. However, i n  the l ight of our present knowledge, it 

is  not possible t o  evaluate the significance of changes i n  the  t i s sue  levels  

of these enzymes. While the patterns of d i s t r ibu t ion  of the enzymes among 

d i f fe ren t  t i s sues  i s  of value f o r  purif icat ion purposes, they o f fe r  l i t t l e  

insight  i n to  the role  of t he  aminopeptidases i n  ce l lu l a r  metabolism. 

Purif ied dipeptidyl aminopeptidase I has been reported t o  have no action 

on physiological substrates such a s  hemoglobin, serum albumin, egg albumin, 

ribonuclease, glucagon, and insulin (Planta and Gruber 1961, Metrione e t  a l .  

1966). These findings, together with the  be l ie f  t h a t  dipeptidyl aminopep- 

t i dase  1 had an extremely narrow substrate specif ic i ty ,  l ed  t o  the  

generally-accepted conclusion t h a t  the enzyme played an inconsequential ro le  

i n  in t r ace l lu l a r  protein catabolism. It now appears, however, t h a t  dipep- 

t i d y 1  aminopeptidase I may play a very s ignif icant  role i n  t i s sue  proteolysis 
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by working i n  conjunction with lysosomal proteases such as  cathepsins B, 

B' and D. The demonstrated a c t i v i t i e s  of dipeptidyl aminopeptidases I 

and I1 help t o  explain the findings of Coffey and de Duve'(1968), who 

showed t h a t  globin substrates are reduced, predominantly, t o  amino acids 

and dipeptides by extracts  of purified l i v e r  lysosomes; 40$ of the globin 

residues were recovered as amino acids, and 3076 as  dipeptides. 

boxypeptidase a c t i v i t y  of cathepsin A (Iodice 1967) may a l so  contribute 

f r e e  amino acids t o  the pool. The production of r e l a t ive ly  large amounts 

of dipeptides provides a raison d 'e t re  f o r  t he  soluble dipeptidases which 

have been reported t o  be localized i n  the non-particulate f ract ion from 

The car- 

c e l l s  of t he  p i tu i t a ry  gland (Ellis and Perry 1966), bra in  (Marks, e t  a l .  

1968), kidney (Vmha-Perttula e t  a l .  1966) and a sc i t e s  carcinoma (Patterson 

- e t  a l .  1963). 

tules, it may be assumed tha t  dipeptides resu l t ing  from the breakdown of 

Since lysosomes a re  f reely permeable t o  small organic mole- 

proteins  can diffuse in to  the c e l l  sap where f i n a l  conversion t o  f ree  amino 

acids i s  accomplished by the soluble dipeptidases. 

The lysosomal cathepsins which have been reasonably well characterized, 

namely, cathepsins A, B, B t ,  D and dipeptidyl aminopeptidases 1 and I T ,  en- 

compass a broad spectrum of spec i f ic i t ies  which endow the  lysosome with 

a d i scre te  and powerful proteolytic system. One rather  dramatic e x m l e  of 

t h e i r  digestive capacity i s  the  process of "crinophagy" exhibited by p i tu i -  

t a r y  lysosomes. Once a s t r e s s f u l  stimulus has been terminated, hormone- 

bearing secretion granules accumulate within the secretory ce l l s .  Electron 

microscopic s tudies  show tha t  these "surplus" secretion granules fuse with 

lysosomes wherein they undergo extensive digestion (Smith and Farquhar 

1966). Biochemical s tudies  conducted by E l l i s  ' (1960) with highly 

pur i f ied  p i tu i t a ry  proteinase I ("cathepsin D") have shown t h a t  75 and 1005 
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of - the  biological ac t iv i ty  of growth hormone and prolactin,  respectively, 

are l o s t  as a consequence of the cleavage of only seven peptide bonds i n  

each of these hormones. Recent studies conducted i n  t h i s  Laboratory have 

revealed tha t  growth hormone i s  extensively degraded by cathepsin B ' .  

is expected t h a t  p i tu i t a ry  dipeptidyl aminopeptidases I and 11, together 

with the  soluble dipeptidase and aminopolypeptidase of the p i tu i t a ry  ( E l l i s  

and Perry 1966), would continue t h i s  degradative process, and thereby re- 

tu rn  the  constituent residues of these hormones t o  the amino acid pool of 

t h e  gland. 

It 

The presence of additional extra-lysosonal peptidases i n  the  c e l l  sap 

and par t icu la te  elements suggests the  existence of more specialized and, 

perhaps, alteznate pathways f o r  the  degradation of peptides. ?or example, 

dipeptidyl aminopeptidase I11 of the  c e l l  sap may serve t o  fur ther  degrade 

oligopeptides released by an alkaline proteinase found i n  the secretion 

granules of anter ior  p i tu i t a ry  c e l l s  (Tesar - e t  a l .  1969). 

as yet  undefined, functions a re  a l so  suggested by the presence i n  micro- 

somes of dipeptidyl aminopeptidase IV (Hopsu-Havu and Sarimo 1967) and leu- 

cy1 arylamidase (Patterson - e t  a l .  1963). 

bonds cleaved i n  the  conversion of proinsulin t o  insul in  (Steiner e t  a l .  

1969) fur ther  suggests the  existence of i n t r ace l lu l a r  peptidases which pos- 

sess highly specif ic  functions. 

Specific, but 

Finally, the  se l ec t iv i ty  of the  
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TABLE: 1 

NH*-TERMINAL DIPEPTIDES LIBERATED FROM POLYPEPTIDE SUBSTRATES 
BY DIPEPTIDYL AMINOPEPTIDASE I (CATHEPSIN C) 

I 

Ala + +  I l l  

COOH-TERMINAL RESIDUE 

Cy S03H 

+ +  

A NEGATIVE (-1 OR POSITIVE (+) RESULT SHOWN WITHIN A BOX (0) MEANS THAT THE 
ACTIVITY WAS TESTED WITH A DIPEPTIDE 8 -  NAPHTHYLAMIDE SUBSTRATE ONLY. 
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Table 2 
I 

Specificity and kinetics of dipeptide B-naphthylamide hydrolysis 
by rat liver dipeptidyl aminopeptidaseI( cathepsin C) 

Sub s t ra t e 
( -B-naphthylamide ) 

Gly-Arg 
Cb Z- Gly-Arg 
Ala-Arg 
Pro-Arg 
Ser-Me t i 
Ala-Ala 
Glu-Hi s 
Ser-Tyr 
Be-Arg 
Gly-Phe 
His -Ser 
Leu-Ala 
W s  -Ala 

b g - k g  
Gly-PrO 

(in secretin) 

(in ACTR) 
(in Ala ) 
(in ACTH) 
(in ACTH) 
(in ACTH) 

4 

Activity" 

Specific 

moles mine1 
g 'protein 
- 
300 

215 
164 
100 

46 
33 
28 - 

23 

0 

(in insulin B chain) 17 
(in glucagon) 

(in glucagon) 

16 
10 

0 

0 

0 

Relat iv 
~ 

4& 
100 

0 

72 
55 
33 
15 
11 

9 
8 
5.6 
5.3 
3 - 4  
0 

0 

0 

Kinetics 

K It S.E. 
m aPP 

)' mM 

0.1 5 0.006 

0.17 ~t 0.03 
0.19 2 0.01 

0.17 f 0.01 

0.022 lk 0.002 

kcat _+ S.E. 

-1 sec 
1,300 * 30 

510 2 39 
248 1 g 

79 2 3 
116 3. 6 

a Reaction mixtures contained 0.2 mM substrate; 10 mM 2-mercaptoethylamine 
hy&rochloride; 10 mM cacodylic acid-TJaOH, pH 6.0. Temperature 37°C. 
Reaction rates were measured by a direct fluorometric method (McDonald et al. l966a). 
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TABLE 3 

Rates of dipeptide B-naphthylamide hydrolysis at pH 5.5 
by dipeptidyl aminopeptidase I1 from 
bovine anterior pituitary glands 

Sub strate 
(-B-naphthylamide ) 

Ly s -Ala 
N?, NE - d ib e n z y loxyc arb ony 1- Ly s -Ala 
Arg-Ala 
Leu-Ala 
Ala-Ala 
Gly-Pro 

Gly-kg 
k g - m 3  
Gly-fie 
Ser-Tyr 
Ser-Met 

Act 
Spec if i c 

Imoles/min/mg 

16 
0 

4.8 
1.6 
0.8 
0.7 
0 

0 

0 

0 

0 

vity 
Relative 

$ 

100 

0 

30 
10 

5.0 

4.5 
0 

0 

0 

0 

0 

No activity was detected on the B-naphythylamides of Asp-Ala, His-Ser, 
His-fie, Lys-Lys, o r  Gly-Trp. 
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TABLE 4 

Relative r a t e s  of t r ipept ide hydrolysis a t  pH 5.5 
by dipeptidyl aminopeptidase I1 from 

bovine anter ior  p i tu i t a ry  glands 

Substrate I 
Ala-Ala-Ala 

D-Ala-D-Ala-D-Ala 

Met-Met-Ala 

Met -Met -Met 

Ser-Met - Glu 

Ser-Me t- Gln 

Met-Gly-Met 

Gly-Gly-Met 

Phe -Gly - Gly 

Phe -Phe -Phe 

TJCC-TJT-TJT 

Gly- Gly- Gly 

Val-Val-Val 

Relative Act ivi ty  

100 

0 

62 

33 
28 

23 

9 
3 
1 
1 

1 

0 

0 

Hydrolysis was shownto involve the  release of 
the NHZ-terminal dipeptide. Dipeptides l iberated 
from homologous t r ipept ides  were assumed t o  be 
from the  NH2 terminus. 
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Rates of dipeptide f3-naphthylamide hydrolysis a t  pH 8.0 

r a t  kidney 
by dipeptidyl aminopeptidase from 

Ijub s t r a  t e 

(-B-naphthylamide ) 

Gly-Pro 

Pro 

fl-b enz yloxyc arbonyl- Gly -Pr o 

Leu-Ala 

Arg-Ala 

I p  -Ala  

A l a - A l a  

Asp-Ala  

Gly-Phe 

Gly-Arg 

Arg-bg 

Specific 
pmoles/min/mg 

9.8 
0.01 

0 

0.86 

0.56 
0.50 

0.16 

0 

0 

0 

0 

i v i t y  

' Relative 

$ 
100 

0.1 

0 

8.8 
5.7 
5.1 
1.6 
0 

0 

0 

0 

No a c t i v i t y  was detected on the  f3-naphthylamides of Pro-Arg, 
Phe-Arg, Ala-Arg, fl-benzoyl-Arg, His-Ser, His-me, Ser-Tyr, 
Ser-Met, or  Gly-Trp. 
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Fig. 1. Time course analysis of the degradation of @-corticotropin 

(ACTH) by rat l i v e r  dipeptidyl aminopeptidase I (cathepsin C) .  

5 x 
About 

pmole enzyme and 1 pmole ACTH was incubated i n  a 2-mercapto- 

ethanol-pyridine-HC1-acetic acid buffer, pH 5.0. The or ig in  a t  the l e f t  

contained a zero time aliquot (0.03 pmole ACTH) plus 0.03 pmole each of 

3 dipeptide standards. 

An enzyme control  (E)  and a substrate control (S) were incubated f o r  120 

min. The prod- 

ucts  accumulated i n  the  120-min reaction mixture were ident i f ied as  Glu- 

H i s ,  Ser-Met sulfone ( Ser-Met-02), serine, %e-Arg, Ser-Tyr, Ser-Met, and 

Trp-Gly. (From McDonald e t  al.  1969b.) 

Reaction times up t o  120 min a re  represented. 

A 30-min reaction i s  shown that contained no added C1-. 

Fig. 2. Hydxolysis of polypeptide hormones by r a t  l i v e r  dipeptidyl 

aminopeptidase I (cathepsin C)  a t  pH 5.0 t o  5.5 i n  the  presence of added 

C1- and -SH. The NR2-terminal attack upon these hormones is  i l l u s t r a t e d  

and shows the  par t icu lar  peptide bonds t h a t  are cleaved during the con- 

secutive removal of dipeptides. The v e r t i c a l  bars between glucagon and 

secre t in  indicate the points i n  the  amino acid sequences where the  con- 

s t i t u e n t  residues d i f f e r .  

. 

Fig. 3. Effect of concentration of various hal ide ions on the r a t e  

Of Gly-Phe-p-naphthylamide hydrolysis by r a t  l i v e r  dipeptidyl aminopep- 

t i dase  I (cathepsin C ) .  

hal ide s a l t  were contained i n  a 4 ml, fluorometric assay system buffered 

a t  pH 6.0 with 10 mM mercaptoethanol-0.01 M cacodylic acid-NaOH buffer, 

PH 6.0. (From McDonald e t  a l .  1969b. ) 

The enzyme (40 ng of protein)  and the  appropriate 
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PLATE I. Histochemical and immunochemical s ta ining of l i v e r  lysosomes 
f o r  dipept idyl  aminopeptidase I (cathepsin C ) .  

Fig. 4. Lysosomal s t ruc tu res  stained f o r  dipept idyl  aminopeptidase 

I i n  the  l i v e r  of a r a t  sacr i f iced  40 min a f t e r  a s ing le  in t raper i tonea l  

i n j ec t ion  of glucagon (5@g per lOOg body weight). 

and s ta in ing  of autophagic body (Ab) as wel l  as lysosomes (L) of t he  

dense-body type; (nucleus n). Pro-Arg-4-methoxy-~-naphthylamide as sub- 

strate and hexazotized pararosaniline were used i n  a simultaneous re-  

ac t ion  a t  pH 5.5 f o r  20 min a t  37°C. Mercaptoethylamine-HClwas used 

as a source of SR and C1-. 

Note formation 

I 

X 21,000. 

Fig. 5 .  Lysosomes (L) of t he  dense-body type s ta ined f o r  dipept idyl  

aminopeptidase I i n  l i v e r  of a control rat .  X 30,000. 

Fig. 6. Immunochemical s ta ining f o r  dipeptidyl aminopeptidase 1 i n  

an epoxy-embedded section (211) of l i v e r  using the  peroxidase-labeled 

antibody procedure. (See Nakane and Pierce 1967.) X 1,000. 

Fig. 7. Lysosome (L) s ta in ing  f o r  dipeptidyl aminopeptidase I by 

t h e  peroxidase-labeled antibody procedure. 

osmium chelated by oxidized 3,3' -diaminobenzidine. 

Electrolz opacity w a s  due t o  

X 30,000. 

All t i s s u e s  (except l i v e r  used f o r  immunochemical s ta in ing)  were 
f ixed  i n  1.5% d i s t i l l e d  glutaraldehyde, pH 7.4, 310 m0sm. Tissues 
were perfused f o r  10 min and the f ixa t ion  continued f o r  6 hours a t  
4°C. Non-frozen 2% sect ions were cut, using an Oxford Vibratome, 
and s tored a t  4°C i n  7% sucrose-0.M cacodylic acid-NaOH buffer,  
pH 7.4, u n t i l  used i n  cytochemical reactions.  Liver used f o r  i m -  
munochemical s ta in ing  was s imilar ly  t reated,  except the  t i s s u e  was 
f ixed  i n  lO$ formalin i n  O.O5M phosphate buffer, pH 7.4. 
techniques w i l l  be reported i n  d e t a i l  elsewhere. 

These 
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PLATE 11. Pituitary lysosomes stained for acid phosphatase and 
dipeptidyl aminopeptidases 1 and 11. 

Fig. 8. 
.technique. 
tif a gonadotrophic cell 
Sg). (See Smith 1969a.) X 31,000. 

Acid phosphatase staining with B-glycerophosphate lead salt 
Localization ,of reaction product is in lysosomal structures 

(multivescular body Mv; secretion granule 

Fig. 9. Epoxy-embedded section (2p) of rat anterior pituitary gland 
stained for dipeptidyl aminopeptidase I1 with Lys-Ala-k-methoxy-& 
naphthylamide as substrate and hexazotized pararosaniline in a simul- 
taneous reaction at pH 5.5, 37"C, 4 min reaction time. X 800. 

Fig. 10. Thin section adjacent to above 2p section. Dipeptidyl amino- 
peptidase I1 staining of dense-body-type lysosomes (L) in a growth hor- 
mone secreting cell (secretion granule Sg; nucleus n). 
of reaction product due to chelated osmium. X 24,000. 

Electron opacity 

Fig. 11. Iiysosomes (L) stained f o r  dipeptidyl aminopeptidase I in - 
a gonadotrophic cell with Pro-Arg-4-methoxy-B-naphthylamide and hexazotized 
pararosaniline, 37"C, 35 min reaction time at pH 5.5. Staining of ly- 
sosomes for dipeptidyl aminopeptidase I is much less intense than for di- 
peptidyl aminopeptidase 11. 
pituitary contains about 10 times more dipeptidyl aminopeptidase 11. 
different degree of staining of three lysosomes. 

Biochemical studies (Table 7) show that the 
Note 

X 48,000. 
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PLATE 111. Thyroid lysosomes of the rat stained for dipeptidyl 
aminopeptidase 11. 

Fig. 12. Lysosomal staining for dipeptidyl aminopeptidase I1 with 
Lys-Ala-4-methoxy-B-naphthylamide as substrate and hexazotized para- 
rosaniline in a simultaneous coupling reaction 37°C for 3 min at 
pH 5.5 (lysosome L; nucleus n; colloid Col). X 16,000. 

Fig. 13. Apex of thyroid follicular cell with lysosomal staining 
Note small lysosome (L) and adjoin- for dipeptiqvl aminopeptidase 11. 

ing colloid droplet. X 24,000. 

Fig. 14. 
aminopeptidase 11. 

Epoxy-embedded thyroid section (2p) stained for dipeptidyl 
Note localized reaction product in epithelial 

cel ls  of the follicle surrounding the colloid (Col). X 800. 

I 
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1 Fig. 15 Time course analysis of t h e  hydrolysis of Asp (NHZ)-angio- 

t e n s i n \ I I  (CIBA) a t  pH 7.9 by purif ied dipept idyl  aminopeptidase I11 

from bovine an te r io r  p i t u i t a r y  glands. The react ion mixture contained 

0.3 pmole of angiotensin I1 and 75 Mg dipept idyl  aminopeptidase I11 i n  

0 , l m l  of 1 mM d i th io thre i to l -0 .1M NH HCO , pH 7.9. The react ion mix- 

t u r e  was incubated a t  37"C, and, a t  the designated time in te rva ls ,  1 p l  

al iquots  (equivalent t o  3 m o l e s  of angiotensin) were applied t o  a t h i n  

l aye r  of microcrystall ine ce l lu lose .  Enzyme (E) and substrate  (S) con- 

t r o l s  w e r e  incubated f o r  0 and 120  min. The minor component seen i n  the  

subs t ra te  is Asp -angiotensin I1 -- an equilibrium product formed during 
1 the  synthesis  of Asp (NHZ)-angiotensin 11. 

4 3  
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